			[2]
Roll No	Total Printed Pages -11	2.	If Z_1 and Z_2 are two complex numbers, then which of the following is true?
F 44	45		(A) $ Z_1 - Z_2 \le Z_1 - Z_2 $
F - 1445			(B) $ Z_1 - Z_2 \ge Z_1 - Z_2 $
C.B.S. (Sixth Semester)			
EXAMINATION, May - June, 2022 ANALYSIS-IV			(C) $ Z_1 - Z_2 = Z_1 - Z_2 $
(For Mathematics Stream) (M-601)			(D) $ Z_1 - Z_2 \le Z_1 - Z_2 $
Time : Three Hours]	[Maximum Marks:40	3.	Fixed points of bilinear transformation $\omega = \frac{z}{2-z}$ are
Note: Attempt all sections as directed.			(A) 0,1
(Section-A)			(B) 2,3
(Objective/Multiple Choice Questions) (0.5 mark each) Note : Attempt all questions.			(C) 1,-1
			(D)0,2
Choose the correct option :			
1 If $ a < 1$ & $ b < 1$ then $\left \frac{a-b}{b} \right $	5	4.	Every bilinear transformation can be expressed as a resultant of
1. In a strain $ 1-\overline{a}b ^{\sim}$			(A) an odd number of inversions
(A) equal to 1			(B) an even number of inversions
(B) less than 1 (C) greater than 1			(C) both (A) and (B)
			(D) None of these
(D) equal to zero			
	P.T.O.	I	F - 1445

[3]

- 5. If harmonic functious u and v satisfy Cauchy- Reimann equation, then u+i v is
 - (A) an entire function
 - (B) a constant function
 - (C) an analytic function
 - (D) None of these
- 6. The radius of convergence of power series $\sum \frac{(n!)^2}{(2n)!} z^n$
 - (A) 1
 - (B) 2
 - (C)3
 - (D)4
- 7. Every analytic function can be developed in a

P.T.O.

- (A) Convergent Taylor's series
- (B) Divergent series
- (C) infinite series
- (D) None of these
- 8. Zeros of an analytic function are
 - (A) Critical points
 - (B) Fixed points
 - (C) Isolated points
 - (D) Singular points
- F 1445

- 9. $\int_{L} |dz|$ where L is any rectifiable arc joining the points z=a and z=b is equal to
 - (A) |b-a|
 - (B) (b-a)
 - (C) arc length of L
 - (D)0
- 10. If the principal part of Laurent's series is zero, then the Laurent's series reduces to
 - (A) Maclaurin's series
 - (B) Cauchy's series
 - (C) Taylor's series
 - (D) None of these

11. Value of
$$\int_{C} \frac{z^2 - z + 1}{z - 1}$$
, where C is the circle |z|=1
(A) 0
(B) πi
(C) $-2\pi i$
(D) $2\pi i$
F-1445

- 12. If a function is analytic at all the points of a bounded domain except of finitely many points, then these points are called
 - (A) Singular points
 - (B) Simple points
 - (C) Continuous points
 - (D) None of these
- 13. Every polynomial of degree n has exactly
 - (A) (n-1) zeros
 - (B) n-zeros
 - (C) (n+1) zeros
 - (D) exactly one zero
- 14. The zero of first order is known as
 - (A) complex zero
 - (B) simple zero
 - (C) singularity
 - (D) None of these

15. z=1 is _____ pole of
$$f(z) = \frac{1}{z(z-1)^2}$$

- (A) Zero
- (B) Simple pole
- (C) Double pole
- (D) None of these
- F 1445

P.T.O.

- 16. No. of roots of the equation $z^{8}-4z^{5}+z^{2}-1=0$, that lie inside the circle |z|=1 is....
 - (A) 8
 - (B) 5
 - (C)2
 - (D)1
- 17. For the function f (z)= $e^{\frac{1}{2}}$, the point z=0 is its
 - (A) Removable singularity
 - (B) Isolated singularity
 - (C) Essential singularity
 - (D) Pole
- 18. A rational function has no singularities other than
 - (A) Removable singularity
 - (B) Isolated singularities
 - (C) Essential singularities
 - (D) Poles
- 19. If $f: G \to \mathbb{C}$ is an analytic function, then u-Ref, and v= Imf are called
 - (A) Laplace equation
 - (B) Harmonic conjugates
 - (C) Harmonic function
 - (D) None of these
- F 1445

[7]

- 20. A continuous function $u: G \rightarrow R$, which has the mean value property, then
 - (A) u is harmonic
 - (B) u is continuous but not harmonic
 - (C) u is only bounded
 - (D) None of these

(Section-B)

(0.75 marks each)

Note: Attempt all questions.

- 1. Define critical point.
- 2. Define cross ratio.
- 3. State Cauchy-integral formula.
- 4. Define analytic function.
- 5. Define residue at infinity.
- 6. Define isolated singularity and give an example.
- 7. State Liouville's theorem.
- 8. State Taylor's theorem.

9. Find the residue of
$$\frac{1}{(z^2 + a^2)^2} at z = ai$$

- 10. State the argument principle.
- F 1445 P.T.O.

[8]

(Section-C)

(1.25 marks each)

Note: Attempt all questions.

- 1. Evaluate the integral $\int_{0}^{1+i} (x y + ix^2) dz$ along the straight line form z=0 to z=1+i
- 2. Consider the transformation $\omega = ze^{i\pi/4}$ and determine the region in the ω -plane corresponding to the triangular region bounded by the lines x=0,y=0 & x+y=1 in the zplane.
- 3. Evaluate using Cauchy-Integral formula $\int_{a}^{a} \frac{\log 2}{(z-1)^{2}}$

$$\frac{\log z}{(z-1)^3}dz$$

where C is the circle $|z-1|=\frac{1}{2}$

4. Let f(z) be analytic within and on a circle C defined by

$$|z-z_0| = r$$
, If $|f(z)| \le M$ on C, then $|f^n(z_0)| \le n! \frac{M}{r^n}$

F - 1445

[9]

- 5. State and prove Cauchy-Residue theorem.
- 6. Let f(z) be an analytic function and let f'(z) be continuous at each point within and on a closed contour C, then $\int f(z)dz = 0$
- 7. Expand $f(z) = \frac{1}{z^2 3z + 2}$ in a Laurent's series valid for the regin 1<|z|<2
- 8. Find the singularity of the function $\frac{e^{c/(z-a)}}{e^{(z/a)-1}}$ and indicate the character of each singularity.
- 9. Find the residue at the poles of function $\frac{z^4}{(c^2+z^2)^4}$
- 10. If a>e, use Rouche's theorm to prove that the equation $e^{z}=az^{n}$ has n-roots inside the circle |z|=1

(2 marks each)

Note: Attempt all questions.

1. Every Mobius transformation maps circles or straight lines into circles or straight lines

OR

Find the bilinear transformation which maps the points $z_1=2$, $z_2=i$, $z_3=-2$ into the points $\omega_1=1, \omega_2=i$ & ω_3-1

Let f (z) be an analytic function of z in a domain D of the z-plane and let f '(z) ≠ 0 inside D. Then the mapping ω = f(z) is conformal at all points of D.

OR

Use the method of contour integration to prove, that

$$\int_{0}^{\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$$

 Let f(z) be analytic within and on the boundary C of a simply connected region D and let *a* be any point within C, then derivatives of all orders are analytic and given by

$$f^{n}(a) = \frac{n!}{2\pi i} \int_{C} \frac{f(z)dz}{(z-a)^{n+1}}$$

F - 1445

F - 1445

P.T.O.

[11] **OR**

Show that
$$\sin\left\{C\left(z+\frac{1}{z}\right)\right\}$$
 can be expanded in a series
of the type $\sum_{n=0}^{\infty} a_n z^n + \sum_{n=0}^{\infty} bn z^{-n}$ in which the cefficients
of both $z^n \& z^{-n} \arg \frac{1}{2\pi} \int_0^{2\pi} \sin(2\cos\theta) \cos n\theta d\theta$

4. State and prove Morera's theorem.

OR

Apply calculus of residue to prove that

$$\int_{0}^{2\pi} \frac{\cos 2\theta d\theta}{5 + 4\cos \theta} = \frac{\pi}{6}$$

5. State and prove Rouche's theorem.

OR

Use Rouche's theorem to show that the equation $z^{5}+15z+1=0$ has one root in the disc |z|<3/2 and four roots in the annulus 3/2<|z|<2.